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Abstract. We construct the induced holomorphic representations of the multiparameter Hopf
superalgebrasUuq(gl(m/n)) andUuq(sl(m/n)). The first superalgebra we constructed earlier as
the dual of the multiparameter quantum deformation of the supergroupGL(m/n). The second
superalgebra is a Hopf subalgebra of the first for a special choice of the parameters. The
representations are labelled bym + n integer numbers, respectivelym + n − 1 complex numbers,
and act in the space of formal power series of(m + n)(m + n − 1)/2 non-commuting variables,
of whichmn are odd and the rest are even. These variables generate aq-deformation of a flag
supermanifold of the supergroupGL(m/n), respectivelySL(m/n).

1. Introduction

This paper is in a field which is the intersection of two major developments in physics that started
in the 1970s and 1980s: supersymmetry and quantum groups, respectively. The extension of
the activity on quantum groups to the field of supersymmetry was started with the paper
of Manin [1], where the standard multiparametric quantum deformation of the supergroup
GL(m/n) was introduced. These deformations ofGL(m/n) were further extensively studied
in the physics literature, e.g. [2–11]. (For the non-standard two-parameter deformations
of GL(1/1) we see [12–14].) In the case of one-parametric deformation the superalgebra
Uq(gl(m/n)) in duality withGLq(m/n) and its quantum subsuperalgebraUq(sl(m/n)) were
studied in, e.g. [15–35]. However, there was little study of the multiparameter deformations
of U(gl(m/n)) andU(sl(m/n)) and their interrelations; two-parameter deformations were
obtained form = n = 1 in [36, 5, 8], and multiparameter deformations ofU(sl(m/n)) were
obtained in [37], and ofU(sl(m/1)) in [38]. However, until recently the superalgebra in duality
with the standard multiparameter deformationGLuq(m/n) was not known. This dual Hopf
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superalgebra, which we denote asU ≡ Uuq(gl(m/n)), was found in [39]; also found were
the conditions on the parameters for whichU has as Hopf subsuperalgebra the multiparameter
deformationU ′ ≡ Uuq(sl(m/n)). (Form = n = 1 the latter holds always.)

In this paper we construct the induced holomorphic representations ofU and U ′ for
generic deformation parameters. The representations are labelled bym + n integer numbers,
respectivelym + n − 1 complex numbers and act in the space of formal power series of
(m + n)(m + n − 1)/2 non-commuting variables, of whichmn are odd and the rest are even.
These variables generate aq-deformation of a flag supermanifold of the supergroupGL(m/n),
respectivelySL(m/n). The construction is achieved by using the Gauss decomposition of the
generators of the multiparameter matrix quantum supergroupA ≡ GLuq(m/n). We use
it to give a new basis ofA which we use as expansion basis for our functions and which
has convenient properties w.r.t. the right action ofU . Namely, we impose the conditions of
right covariance [40] in order to eliminate the dependence of our functions on the strictly
upper diagonal generators in the Gauss decomposition, while the dependence on the diagonal
generators in the Gauss decomposition is fixed for all functions. These fixed powers of
the diagonal generators are the integer numbers which parametrize our representations. For
u = q = 1 our representations coincide with the holomorphic representations induced from the
upper diagonal Borel subsupergroupB ofG ≡ GL(m/n)and acting on the cosetG/G+, where
G+ is the strictly upper diagonal supergroup ofG. That is why we call our representations
induced. Further, we enforce the conditions under whichU ′ is a Hopf superalgebra. Then
we can set the superdeterminant to unity and consider the representations ofU ′. Finally, we
eliminate also the dependence on the diagonal generators of the Gauss decomposition. This
is done invariantly, so that the representation parameters remain in the matrix elements. For
u = q = 1 these latter representations coincide with the standard holomorphic representations
induced fromB and acting on the cosetG/B. These representations can be extended to arbitrary
complex values of them + n − 1 representations parameters. We finish by stressing that our
representations are the most general holomorphic representations ofU andU ′ (supposing that
the deformation parameters are not nontrivial roots of unity). This is as in the classical case
(u = q = 1) where, in particular, all representations occurring in the applications may be
obtained as subrepresentations of such representations.

The paper is organized as follows. In section 2 we recall the multiparameter matrix
quantum supergroupA and the dual multiparameter Hopf superalgebraU . In section 3 we
give the left and right actions ofU onA. In section 4 we give the Gauss decomposition of
the generators ofA and a new basis ofA. In section 5 we give the explicit construction of
the induced representations ofU andU ′. Section 6 mentions some of the numerous possible
applications of the present results. There are also three appendices.

2. Multiparameter deformation of GL(m/n) and the dual superalgebra

The multiparameter quantum deformationA = GLuq(m/n) of the supergroupGL(m/n) was
introduced first in [1], and later, in a slightly different form, in [11]. It is generated by the
elements of a quantum supermatrixM:

M = (TIJ ) =
(
Aij Biα
Cβj Dβα

)
(2.1)
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whereI, J = 1, . . . , m + n; i, j = 1, . . . , m andα, β = m + 1, . . . , m + n, which obey the
following commutaion relations:

TINTIL = (−1)Î N̂+Î L̂+N̂L̂(−u2)Î pTILTIN for N < L

TINTJN = (−1)N̂ Î+N̂ Ĵ+Î Ĵ (−u2)N̂qTJNTIN for I < J

pTILTJN = (−1)(Î+L̂)(Ĵ+N̂)qTJNTIL for I < J N < L

(−1)(Î+N̂)(Ĵ+L̂)uqTJLTIN − (up)−1TINTJL = (−1)Ĵ N̂+Ĵ L̂+N̂L̂(u− u−1)TILTJN

for I < J N < L

(TIN)
2 = 0 for Î + N̂ = 1

p = qNL

u2
q = 1

qIJ

(2.2)

wherê denotes the parity, which for the indices is defined by:Î = 0 if I = i = 1, . . . , m
andÎ = 1 if I = α = m + 1, . . . , m + n. Further, we define the paritŷTIJ of the generators
TIJ through the parity of the indices, namely we set:̂TIN = (Î + N̂) (mod 2). Thus, the
supermatrixM is in the so-called standard form, so that the elements ofA andD are even and
those ofB andC are odd. We shall not need explicitly the basis ofA which was introduced
in [39], but we shall use the fact that it is homogeneous, i.e. each element of the basis has a
definite parity.

Considered as a superbialgebra,A has the following comultiplicationδA and counitεA
[1]:

δA(TIJ ) =
m+n∑
N=1

TIN ⊗ TNJ = (TIJ )(1) ⊗ (TIJ )(2) (2.3a)

εA(TIJ ) = δIJ (2.3b)

where in (2.3a) we have used Sweedler’s notation for the co-product of an elementa:
δA(a) = a(1) ⊗ a(2). We also recall that for a superbialgebra the coproduct preserves the
parity, (cf e.g., [39]). In particular,̂a = (â(1) + â(2)) (mod 2).

The Hopf superalgebraU ≡ Uuq(gl(m/n))which is in duality withGLuq(m/n)was found
in [39]. NaturallyU is a multiparameter deformation of the superalgebraU(gl(m/n)). We
have shown that as a commutation algebra we have the classical structure, namely, a splitting
in two subalgebras:U ∼= U ′ ⊗ Z, whereU ′ is isomorphic to the standard one-parametric
deformationUu(sl(m/n)), andZ is central inU form 6= n. However, as a coalgebraU cannot
be split in this way, as onlyZ is a Hopf subalgebra, whileU ′ is not a Hopf subalgebra unless
m = n = 1 or some special relations between the parameters exist. These special relations were
established in [39] and used to obtain explicit multiparameter Hopf superalgebra deformations
of U(sl(m/n)) which we use here.

Let us denote the Chevalley generators ofsl(m/n) by HI ,X
±
I I = 1, . . . , m + n − 1.

Then we take for the ‘Chevalley’ generators ofU ′: KI = udIHI /2, K−1
I = u−dIHI /2,

X±I , I = 1, . . . , m + n − 1, d1 = · · · = dm = −dm+1 = · · · = −dm+n = 1, with the
following algebra relations:

KIKJ = KJKI KIK
−1
I = K−1

I KI = 1U (2.4a)

KIX
±
J = u±cIJ X±J KI (2.4b)

[X+
I , X

−
J ] = δIJ K

2
I −K−2

I

λI
(2.4c)

X±I X
±
J = X±J X±I |I − J | > 1 (2.4d)

(aduκX
±)2X±J = 1 |I − J | = 1 (2.4e)
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[[X±m,X
±
m−1]uκ , [X

±
m,X

±
m+1]uκ ]uκ = 0 κ = ± (2.4f)

wherecIJ is the Cartan matrix ofsl(m/n) andλI = dIλ, (λ = u− u−1).
FurtherZ is generated byK = uK ′/2 withK ′ = K (m 6= n),K ′ = K̃ if m = n. HereK is

the standard central generator ofgl(m/n), being given in the defining matrix representation by
1m+n. The generatorK is not used form = n since then it belongs also to the Cartan subalgebra
of sl(m/m)), (being a linear combination of theHI ). Form = nwe introduce the generator̃K
which belongs to the Cartan subalgebra ofgl(m/m), but not to the subsuperalgebrasl(m/m).
In the defining matrix representatioñKIJ = dI δIJ .

The Hopf structure ofU is given by [39]

δU (K
±
I ) = K±I ⊗K±I (2.5a)

δU (X
+
I ) = X+

I ⊗ P1/2
I + P−1/2

I ⊗X+
I (2.5b)

δU (X
−
I ) = X−I ⊗Q1/2

I +Q−1/2
I ⊗X−I (2.5c)

εU (K
±
I ) = 1U εU (X

±
I ) = 0 (2.5d)

γU (KI ) = K−1
I γU (X

±
I ) = −u±(dI+dI+1)/2X±I (2.5e)

δU (K) = K⊗ K εU (K) = 1 γU (K) = K−1 (2.6)

where

PI = (q̃I )K̂ ′
m+n∏
S=1

Q
dSĤS
IS Q1/2

I = K2
IP
−1/2
I (2.7a)

QII =


u2

qi,i+1
I = i 6 m

u′2

q ′α,α+1

I = α > m

(2.7b)

u′ ≡ 1/u, q ′IJ ≡ qIJ /u2

QI,I+1 =



1

qi,i+1
I = i < m

1

q ′m,m+1

I = m
1

q ′α,α+1

I = α > m

(2.7c)

QIS =


qSI

qS,I+1
S 6 I − 1

qI+1,S

qIS
I + 26 S

(2.7d)

q̃I =
( m∏
s=1

QIs

) m+n∏
α=m+1

Q−1
Iα (2.7e)

ĤS ≡
m+n−1∑
J=S

dJHJ Ĥm+n = 0 (2.7f)

and form 6= n we have

K̂ ′ ≡ 1

m− n(K −K0)

K0 ≡
m∑
j=1

jHj +
m+n−1∑
β=m+1

(β − 2m)Hβ
(2.8)
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while form = n we have

K̂ ′ ≡ 1

2m
(K̃ − K̃0)

K̃0 ≡
2m−1∑
I=1

IdIHI .

(2.9)

We have also

δU (PI ) = PI ⊗ PI δU (QI ) = QI ⊗QI (2.10a)

εU (PI ) = 1U εU (QI ) = 1U (2.10b)

γU (PI ) = P−1
I γU (QI ) = Q−1

I . (2.10c)

Note that from the generatorsX±I ,KI , K, onlyX±m are odd, while the rest are even.
As we said we shall also use the conditions on the deformation parameters that decouple

K ′ fromP andQ, namely

q̃I = 1. (2.11)

If (2.11) holds thenU ′ is a Hopf subalgebra ofU [39]. Note that form = n = 1 (2.11) holds
always.

The bilinear form giving the duality betweenU andA is given by [39]

〈KI , TJL〉 = udI (δIJ−
dI
dI+1

δI+1,J )/2δJL (2.12a)

〈X+
I , TJL〉 = uĨ/2Q−1/2

I,I+1δIJ δJ+1,L (2.12b)

〈X−I , TJL〉 = (−1)Ĩ u(Ĩ−2dI )/2Q
1/2
II δILδJ−1,L (2.12c)

from which follows

〈P1/2
I , TJL〉 = Q1/2

IJ δJL (2.12d)

〈Q1/2
I , TJL〉 = udI (δIJ−

dI
dI+1

δI+1,J )Q
−1/2
IJ δJL. (2.12e)

Finally

〈K, TJL〉 = u1/2δJL m 6= n (2.13a)

〈K, TJL〉 = udJ /2δJL m = n (2.13b)

whereĨ = 1 if I = m and 0 otherwise.
The pairing between arbitrary elements ofU andA follows from the properties of the

duality pairing. The pairing (2.12) is standardly supplemented with

〈y, 1A〉 = εU (y). (2.14)

3. Left and right actions of U andU′

We begin by defining two actions of the dual algebraU onA. First we introduce (as in [41])
the left regular representation ofU by

π(y)TIL =
m+n∑
N=1

〈γU (y), TIN 〉TNL (3.1a)

= 〈γU (y), (TIL)(1)〉 (TIL)(2) (3.1b)
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where in the second line we have used (2.3a). From (3.1) we find the explicit action of the
generators ofU :

π(KI )TJL = udI (
dI
dI+1

δI+1,J−δIJ )/2TJL (3.2a)

π(X+
I )TJL = −u(Ĩ+dI+dI+1)/2Q

−1/2
I,I+1δIJ TJ+1,L (3.2b)

π(X−I )TJL = −(−1)Ĩ u(Ĩ−3dI−dI+1)/2Q
1/2
II δI+1,J TJ−1,L (3.2c)

from which follows:

π(P1/2
I )TJL = Q−1/2

IJ TJL (3.2d)

π(Q1/2
I )TJL = udI (

dI
dI+1

δI+1,J−δIJ )Q1/2
IJ TJL. (3.2e)

Finally,

π(K)TJL = u−1/2TJL m 6= n (3.3a)

π(K)TJL = u−dJ /2TJL m = n. (3.3b)

The above is supplemented with the following action on the unit element ofA:

π(KI )1A = 1A π(X±I )1A = 0 π(K)1A = 1A. (3.4)

In order to derive the action ofπ(y) onA we shall use the general form [42], which is the
same as (3.1b) but for an arbitrary elementψ of A:

π(y)ψ = 〈γU (y), ψ(1)〉ψ(2). (3.5)

So the action on the product of two homogeneous elements may be calculated using the
properties of pairing, the graded tensor product, coproduct and antipode, namely,

〈y1⊗ y2, ψ1⊗ ψ2〉 = (−1)ŷ2ψ̂1〈y1, ψ1〉〈y2, ψ2〉 (3.6a)

(a ⊗ b)(c ⊗ d) = (−1)b̂ĉac ⊗ bd (3.6b)

δ(φψ) = (−1)φ̂(2)ψ̂(1)φ(1)ψ(1) ⊗ φ(2)ψ(2) (3.6c)

γ (ab) = (−1)âb̂γ (b)γ (a). (3.6d)

We find using (3.5) and (3.6):

π(y)φψ = (−1)ŷ(1)(φ̂+ŷ(2))(π(y(2))φ)(π(y(1))ψ). (3.7)

Thus we have for the generating elementsy = KI ,X
±
I , (note that in all cases we have

ŷ(1)ŷ(2) = 0)

π(KI )φψ = (π(KI )φ)π(KI )ψ (3.8a)

π(X+
I )φψ = (−1)φ̂Ĩ (π(P1/2

I )φ)π(X+
I )ψ + (π(X+

I )φ)π(P
−1/2
I )ψ (3.8b)

π(X−I )φψ = (−1)φ̂Ĩ (π(Q1/2
I )φ)π(X−I )ψ + (π(X−I )φ)π(Q

−1/2
I )ψ. (3.8c)

From (3.8a) follows:

π(P1/2
I )φψ = (π(P1/2

I )φ)π(P1/2
I )ψ (3.8d)

π(Q1/2
I )φψ = (π(Q1/2

I )φ)π(Q1/2
I )ψ. (3.8e)

ForK we have

π(K)φψ = (π(K)φ)π(K)ψ. (3.9)
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Applying the above rules one obtains

π(KI )(TJL)
n = undI (

dI
dI+1

δI+1,J−δIJ )/2(TJL)n (3.10a)

π(P1/2
I )(TJL)

n = Q−n/2IJ (TJL)
n (3.10b)

π(Q1/2
I )(TJL)

n = undI (
dI
dI+1

δI+1,J−δIJ )Qn/2
IJ (TJL)

n (3.10c)

π(X+
I )(TJL)

n = −δIJ u(Ĩ+dI+dI+1)/2Q
−1/2
I,I+1cI (TJL)

n−1TJ+1,L (3.11)

π(X−I )(TJL)
n = −δI+1,J (−1)Ĩ u(Ĩ−3dI−dI+1)/2Q

1/2
II u

−(n−1)Ĩ cI TJ−1,L(TJL)
n−1 (3.12)

cI =
{
(qi,i+1)

(n−1)/2[n]u if I = i 6 m
(q ′α,α+1)

(n−1)/2[n]u if I = α > m
(3.13)

whereTJL = ajl or dαβ and [n]u = (un − u−n)/λ.
The left action is consistent with(biα)2 = (cαi)2 = 0. ForK we have

π(K)(TJL)n = u−n/2(TJL)n m 6= n (3.14a)

π(K)(TJL)n = u−ndJ /2(TJL)n m = n. (3.14b)

Next we introduce the right action ofU following [41] (cf also [43], where it is called left
action and denoted byπl), but taking into account the graded structure

πR(y)TIL =
m+n∑
N=1

(−1)ŷT̂IN TIN 〈y, TNL〉 (3.15a)

= (−1)ŷT̂IL(1) (TIL)(1)〈y, (TIL)(2)〉 (3.15b)

wherey ∈ U .
From (3.15) we find the explicit right action of the generators ofU :

πR(KI )TJL = udI (δIL−
dI
dI+1

δI+1,L)/2TJL (3.16a)

πR(X
+
I )TJL = δI+1,L(−1)Ĩ T̂J,L−1uĨ/2Q

−1/2
I,I+1TJ,L−1 (3.16b)

πR(X
−
I )TJL = δIL(−1)Ĩ (1+T̂J,L+1)u(Ĩ−2dI )/2Q

1/2
II TJ,L+1. (3.16c)

From (3.16a) follows:

πR(P1/2
I )TJL = Q1/2

IL TJL (3.16d)

πR(Q1/2
I )TJL = udI (δIL−

dI
dI+1

δI+1,L)Q
−1/2
IL TJL. (3.16e)

Finally,

πR(K)TJL = u1/2TJL m 6= n (3.17a)

πR(K)TJL = udL/2TJL m = n. (3.17b)

The above are supplemented with the following action on the unit element ofA:

πR(KI )1A = 1A πR(X
±
I )1A = 0 πR(K)1A = 1A. (3.18)

In order to derive the actionπR(y) onA we shall use the general form [42], which is the
same as (3.15b) but for an arbitrary homogeneous elementψ of A:

πR(y)ψ = (−1)ŷψ̂(1)ψ(1)〈y,ψ(2)〉. (3.19)

So the action of an arbitrary homogeneous elementy ∈ U on the product of two homogeneous
elements ofA is given by

πR(y)φψ = (−1)ŷφ̂(1)+ŷ(2)(φ̂(2)+ψ̂(1))φ(1)〈y(1), φ(2)〉ψ(1)〈y(2), ψ(2)〉 (3.20a)

= (−1)φ̂ŷ(2) (πR(y(1))φ)πR(y(2))ψ. (3.20b)
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Thus we have for the generating elementsy = KI ,X±I ,

πR(KI )φψ = (πR(KI )φ)πR(KI )ψ (3.21a)

πR(X
+
I )φψ = (πR(X+

I )φ)πR(P
1/2
I )ψ + (−1)φ̂Ĩ (πR(P−1/2

I )φ)πR(X
+
I )ψ (3.21b)

πR(X
−
I )φψ = (πR(X−I )φ)πR(Q1/2

I )ψ + (−1)φ̂Ĩ (πR(Q−1/2
I )φ)πR(X

−
I )ψ. (3.21c)

From (3.21a) follows:

πR(P1/2
I )φψ = (πR(P1/2

I )φ)πR(P1/2
I )ψ (3.21d)

πR(Q1/2
I )φψ = (πR(Q1/2

I )φ)πR(Q1/2
I )ψ. (3.21e)

ForK we have

πR(K)φψ = (πR(K)φ)πR(K)ψ. (3.22)

Using this we find

πR(KI )(TJL)
n = undI (δIL−

dI
dI+1

δI+1,L)/2(TJL)
n (3.23a)

πR(P1/2
I )(TJL)

n = Qn/2
IL (TJL)

n (3.23b)

πR(Q1/2
I )(TJL)

n = undI (δIL−
dI
dI+1

δI+1,L)Q
−n/2
IL (TJL)

n (3.23c)

πR(X
+
I )(TJL)

n = δI+1,L(−1)Ĩ T̂J,L−1uĨ/2Q
−1/2
I,I+1u

(dI+dI+1)(n−1)/2c̃I TJ,L−1(TJL)
n−1 (3.24)

πR(X
−
I )(TJL)

n = δIL(−1)Ĩ (1+T̂J,L+1)u(Ĩ−2dI )/2Q
1/2
II u

dI (n−1)c̃I (TJL)
n−1TJ,L+1 (3.25)

c̃I =
{
(qi,i+1)

(1−n)/2[n]u if I = i 6 m
(q ′α,α+1)

(1−n)/2[n]u if I = α > m
(3.26)

whereTJL = ajl or dαβ . The right action is consistent with(biα)2 = (cαi)2 = 0. ForK we
have

πR(K)(TJL)n = un/2(TJL)n m 6= n (3.27a)

πR(K)(TJL)n = undL/2(TJL)n m = n. (3.27b)

4. Basis via Gauss decomposition

Until here we have used implicitly the basis forAgiven in [39], however, it is not suitable for the
construction of the induced representations following [40, 41]. From the latter references we
know that the suitable basis is via the use of a Gauss decomposition. The point is that we shall
use right covariance [40] to reduce the number of variables on which our functions depend.
Right covariance with respect to the raising generatorsX+

I means that their right action will
annihilate our functions. It so happens that this right action will annihilate automatically the
‘lower triangular’ and ‘diagonal’ entries of the Gauss decomposition. Thus, right covariance
eliminates dependence on the ‘upper triangular’ entries of the Gauss decomposition. Right
covariance with respect to the Cartan generators means that their right action will be scalar
on our functions. For this it is sufficient that the right action of the Cartan generators will be
scalar on the ‘lower triangular’ and ‘diagonal’ entries of the Gauss decomposition.

We give the simple casesm = n = 1 andm = 2, n = 1 in appendices A and B,
respectively. Below we treat the general case.

The matrixT in (2.1) may be written as

T =
(
A B

C D

)
=
(

1 0
F 1

)(
A 0
0 H

)(
1 E

0 1

)
(4.1)
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where

H = D − CA−1B (4.2a)

E = A−1B F = CA−1 (4.2b)

andA−1 is the inverse of the quantum matrixA. Furthermore, the quantum matricesA andH
may be decomposed as follows:

A = ALADAU (4.3a)

H = HLHDHU (4.3b)

where the indexL indicates the strictly lower triangular matrix (with units on the main
diagonal),D for the diagonal matrix andU for the strictly upper triangular matrix (with
units at the main diagonal). Then, the quantum supermatrixT may be decomposed as follows:

T =
(
A B

C D

)
=
(
AL 0
0 HL

)(
AD 0
0 HD

)(
AU 3

0 HU

)
(4.4)

where

3 = AUE = AUA−1B (4.5a)

0 = FAL = CA−1AL. (4.5b)

In fact, the elements of the quantum matrixA are even and their commutation relations
are that ofGLuq(m), so we can get its Gauss decomposition directly from [41]. For this we
have to suppose that the principal minor determinants ofA:

Dr =
∑
ρ∈Sr

ε(ρ)a1ρ(1) . . . arρ(r) =
∑
ρ∈Sr

ε′(ρ)aρ(1)1 . . . aρ(r)r r 6 m (4.6)

ε(ρ) =
∏
j<k

ρ(j)>ρ(k)

(−qρ(k)ρ(j)
u2

)
(4.7a)

ε′(ρ) =
∏
j<k

ρ(j)>ρ(k)

( −1

qρ(k)ρ(j)

)
(4.7b)

are invertible; note thatDm is just the quantum determinant ofA (we will denote it byDA).
Further, for the ordered setI = {i1 < · · · < ir} andJ = {j1 < · · · < jr}, letξ IJ be ther-minor
determinant with respect to rowsI and columnsJ such that

ξ IJ =
∑
ρ∈Sr

ε′(ρ)aiρ(1)j1 . . . aiρ(r)jr . (4.8)

Note thatξ1...i
1...i = Di . Then one has as in [41] (16 i, k, l 6 m)

ail = YikDkkUkl (4.9)

whereYik are elements ofAL, Dkk are elements ofAD andUkl are those ofAU . They are
given explicitly by

Yik =
k−1∏
s=1

qsi

qsk
ξ1...k−1i

1...k D−1
k (4.10a)

Dkk = DkD
−1
k−1 (D0 = 1) (4.10b)

Ukl = D−1
k ξ

1...k
1...k−1l . (4.10c)
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Now let us calculate the right action ofX+
I onYil andDll . From (3.21b) we deduce that

πR(X
+
I )φψ = (πR(X+

I )φ)πR(P
1/2
I )ψ + (πR(P−1/2

I )φ)πR(X
+
I )ψ (4.11)

whereφ is an arbitrary product ofajl with 16 j, l 6 m. Then, using (3.16b, d) one can prove
by a direct calculus that

πR(X
+
I )ξ

N
L = 0 for L = {1, . . . l}, ∀N (4.12)

and in the particular case we have

πR(X
+
I )Dj = 0. (4.13)

Then using (4.11) we get

πR(X
+
I )Yjl = 0 πR(X

+
I )Dll = 0. (4.14)

To calculate the right action ofX+
I on 0, we first introduce the left and right quantum

cofactor matricesAij andA′ij associated toA:

Aij =
∑
ρ(i)=j

ε(ρσi)

ε(σi)
a1ρ(1) . . . ǎij . . . amρ(m) (4.15a)

A′ij =
∑
ρ(j)=i

ε′(ρσ ′j )

ε′(σ ′j )
aρ(1)1 . . . ǎij . . . aρ(m)m (4.15b)

whereσi andσ ′j denote the cyclic permutations

σi = {i, . . .1} σ ′j = {j, . . . m} (4.16)

and the notatioňx in (4.15) indicates thatx is to be omitted. Then one can show that∑
aijAkj =

∑
A′jiajk = δikDA (4.17)

and obtain the left and right inverse ofA as

Mij = D−1
A A

′
ji = AjiD−1

A . (4.18)

One can calculate the following:

πR(P1/2
I )DA =

m∏
s=1

Q
1/2
Is DA (4.19a)

πR(P1/2
I )D−1

A =
m∏
s=1

Q
−1/2
Is D

−1
A (4.19b)

πR(P1/2
I )Mij = Q−1/2

I i Mij (4.19c)

and using (4.11), (4.18) and (4.19b), we note

πR(X
+
I )Mjl = −Q1/2

II Q
−1
I,I+1δIjMj+1,l (4.20)

and then we get

πR(X
+
I )Fαl = πR(X+

I )CαjMjl = (πR(X+
I )Cαj )πR(P

1/2
I )Mjl

+(−1)Ĩ Ĉαj (πR(P−1/2
I )Cαj )πR(X

+
I )Mjl = 0 (4.21)

from which it follows that

πR(X
+
I )0αl = 0. (4.22)
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It remains now to calculate the right action ofX+
I on the lower triangular matrixHL and

the diagonal oneHD. Note that the defining commutation relations ofGLuq(m/n) in (2.2) are
in fact the explicit of the following super-RTT equation:

(−1)N̂(N̂+L̂)RIJMNTMNTNL = (−1)M̂(Ĵ+N̂)TIMTJNR
MN

NL (4.23)

where the finite-dimensionalR-matrix is given by

RIJ NL = δILδJN
{
(−u2)Î δIJ + θIJ (−1)Î Ĵ qJ I + θJI (−1)Î Ĵ

u2

qIJ

}
+ δINδ

J
Lθ

JI (1− u2) (4.24)

whereθIJ = 1 if I > J and 0 otherwise. (Forn = 0 andqi = u, ∀i, the above relations will
reduce to the RTT relations forGLu(m), [44].) On the other hand, starting from (4.23) one
can prove that the matrixH satisfies the same super-RTT equation with all indices are odd.
This is proved in [45]. So the elements ofH satisfy the defining commutation relations of
GLu′q′(n). Further one can prove that the right action onH is as follows:

πR(KI )hαβ = udI (δIβ−
dI
dI+1

δI+1,β )/2hαβ (4.25a)

πR(X
+
I )hαβ =

{
uĨ/2Q

−1/2
I,I+1δI+1,βhα,β−1 β > m + 1

0 β = m + 1
(4.25b)

πR(X
−
I )hαβ = δIβuQ1/2

ββ hαβ+1− δImu−1/2hα,m+1Emβ (4.25c)

πR(K)hαβ =
{
u1/2hαβ for m 6= n
u′1/2hαβ for m = n (4.25d)

πR(P1/2
I )hαβ = Q1/2

Iβ hαβ (4.25e)

πR(Q1/2
I )hαβ = udI (δIβ−

dI
dI+1

δI+1,β )Q
−1/2
Iβ hαβ. (4.25f)

Now, one can get the Gauss decomposition ofH in the same way as for the quantum
matrixA. For this we have to suppose that the principal minor determinant ofH

Gα =
∑
ρ∈Sα−m

ε̃(ρ)hm+1ρ(m+1) . . . hαρ(α)

=
∑
ρ∈Sα−m

ε̃′(ρ)hρ(m+1)m+1 . . . hρ(α)α m + 16 α 6 m + n (4.26)

ε̃(ρ) =
∏
α<β

ρ(α)>ρ(β)

(−q ′ρ(β)ρ(α)
u′2

)
(4.27a)

ε̃ ′(ρ) =
∏
α<β

ρ(α)>ρ(β)

(
−1

q ′ρ(β)ρ(α)

)
(4.27b)

are invertible; note thatGm+n is just the quantum determinant ofH (we will denote it byDH ).
Further, for the ordered setI = {α1 < · · · < αr} andJ = {β1 < · · · < βr}, let ξ ′IJ be the
r-minor determinant with respect to rowsI and columnsJ such that

ξ ′IJ =
∑
ρ∈Sr

ε̃′(ρ)hαρ(1)β1 . . . hαρ(r)βr . (4.28)

Note thatξ ′m+1...α
m+1...α = Gα. Then one has (m + 16 α, β, γ 6 m + n):

hαγ = ZαβGββVβγ (4.29)
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whereZαβ are elements ofHL, Gββ are elements ofHD andVβγ are elements ofHU . They
are given explicitly by

Zαβ =
β−1∏
γ=m+1

qγα

qγβ
ξ ′m+1...β−1α
m+1...β G−1

β (4.30a)

Gββ = GβG
−1
β−1 (Gm = 1) (4.30b)

Vβγ = G−1
β ξ
′m+1...β
m+1...β−1γ . (4.30c)

Now let us calculate the right action ofX+
I onZαβ andGαα. Using (3.21b) andĥαβ = 0 (mod

2) we get

πR(X
+
I )hαβψ = (πR(X+

I )hαβ)πR(P
1/2
I )ψ + (πR(P−1/2

I )hαβ)πR(X
+
I )ψ (4.31)

from which we deduce

πR(X
+
I )φψ = (πR(X+

I )φ)πR(P
1/2
I )ψ + (πR(P−1/2

I )φ)πR(X
+
I )ψ (4.32)

whereφ is an arbitrary product ofhαβ withm + 16 α, β 6 m +n. Then, one can prove in the
same way as forA that

πR(X
+
I )ξ
′N
L = 0 for L = {m + 1, . . . α} ∀N (4.33)

and in the particular case we have

πR(X
+
I )Gα = 0. (4.34)

Then using (4.32) we get

πR(X
+
I )Zαβ = 0 πR(X

+
I )Gββ = 0. (4.35)

Finally, we write down the superdeterminant

F =
m∏
s=1

Dss

m+n∏
α=m+1

G−1
αα = DmG

−1
m+n (4.36)

for which we also obtain

πR(X
+
I )F = 0. (4.37)

Thus, we have proved that the right action ofX+
I on the strictly lower and diagonal matrices

in the Gauss decomposition ofT is zero. On the other hand the right action ofX+
I on the strictly

upper diagonal matrices in the Gauss decomposition ofT is nontrivial.
We have now for the right action of the Cartan generators:

πR(KI )ξ
N
L = uδIl/2ξNL L = {1, . . . l} ∀N (4.38a)

πR(KI )ξ
′N
L = uδIm/2u′δIα/2ξ ′NL L = {m + 1, . . . α} ∀N (4.38b)

from which follows

πR(KI )Dj = uδIj /2Dj πR(KI )Gβ = uδIm/2u′δIβ/2Gβ (4.39a)

πR(KI )Yjl = Yjl πR(KI )Zαβ = Zαβ (4.39b)

we have also

πR(KI )0αl = 0αl. (4.40)

Now we give the action ofK in both casesm 6= n andm = n.
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Form 6= n we have

πR(K)DA = um/2DA πR(K)Mjl = u−1/2Mjl (4.41a)

πR(K)ξNL = ul/2ξNL L = {1, . . . l} ∀N (4.41b)

πR(K)ξ ′NL = u(β−m)/2ξ ′NL L = {m + 1, . . . β} ∀N (4.41c)

from which it follows:

πR(K)Dj = uj/2Dj πR(K)Gβ = u(β−m)/2Gβ (4.42a)

πR(K)Yjl = Yjl πR(K)0αl = 0αl πR(K)Zαβ = Zαβ. (4.42b)

Form = n we have

πR(K)DA = um/2DA πR(K)Mjl = u−1/2Mjl (4.43a)

πR(K)ξNL = ul/2ξNL L = {1, . . . l} ∀N (4.43b)

πR(K)ξ ′NL = u′(β−m)/2ξ ′NL L = {m + 1, . . . β} ∀N (4.43c)

from which it follows:

πR(K)Dj = uj/2Dj πR(K)Gβ = u′(β−m)/2Gβ (4.44a)

πR(K)Yjl = Yjl πR(K)0αl = 0αl πR(K)Zαβ = Zαβ. (4.44b)

Thus, we have shown that right action of the Cartan generators is scalar on all entries of
the Gauss decomposition.

The generatorsYlj , 0αl, Zβα are the q-analogues of the strictly lower triangular
supermatrices ofGL(m/n), while the generatorsUjl,3iα, Vαβ are theq-analogues of the
strictly upper triangular supermatrices ofGL(m/n). The generatorsDjj ,Gαα,F are theq-
analogues of the diagonal supermatrices ofGL(m/n). In the following we shall need their
commutation relations. Since these are rather lengthy they are given in appendix C.

Clearly one can replace the basis ofA in terms of TJL with a basis in terms of
XLJ = (Ylj , 0αj , Zβα)with (L > J),Di ,Gα, (α 6 m+n−1),F , andWJL = (Ujl,3jα, Vαβ).
More precisely, the basis will be given as follows:

fv̄,k̄,w̄
.= (Y21)

v21 . . . (Ym,m−1)
vm,m−1(0m+1,1)

vm+1,1 . . . (0m+n,m)
vm+n,m

×(Zm+2,m+1)
vm+2,m+1 . . . (Zm+n,m+n−1)

vm+n,m+n−1

×(D1)
k1 . . . (Dm)

km(Gm+1)
km+1 . . . (Gm+n−1)

km+n−1(F)km+n

×(Vm+n−1,m+n)
wm+n−1,m+n . . . (Vm+1,m+2)

wm+1,m+2

×(3m,m+n)
wm,m+n . . . (31,m+1)

w1,m+1(Um−1,m)
wm−1,m . . . (U12)

w12 (4.45)

v̄
.= {vIJ |16 J < I 6 m + n} vIJ ∈ Z+ vαi 6 1

k̄
.= {kI |16 I 6 m + n} kI ∈ Z

w̄
.= {wIJ |16 I < J 6 m + n} wIJ ∈ Z+ wiα 6 1

and we are using the normal ordering similar to [41], namely, we first put the elementsYij in
lexicographic order, (i.e., ifi < k thenYij is beforeYk` andYti is beforeYtk), then the elements
0αi in lexicographic order, then the elementsZαβ in lexicographic order, then the elementsDI

andF , then the elementsVαβ in antilexicographic order, (i.e., ifα > γ thenVαβ is beforeVγδ
andVτα is beforeVτγ ), then the elements3iα in antilexicographic order, finally, the elements
Uij in antilexicographic order. Note that the basis includes the unit element ofA:

f0,0,0 = 1A. (4.46)

Finally, we should note that the commutation relations in appendix C are given in anticipation
of this basis.
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5. Representations ofU andU′

We have already seen that the basis introduced in (4.45) has the necessary right covariance
properties we mentioned earlier. Thus, we consider candidates for our representation spaces
the formal power series:

ϕ =
∑

kI∈Z,vαi ,wiα∈{0,1}
vji ,vβα,wij ,wαβ∈Z+

µv̄,k̄,w̄fv̄,k̄,w̄ µv̄,k̄,w̄ ∈ C. (5.1)

We impose now right covariance with respect toX+
I ; i.e., we require

πR(X
+
I )ϕ = 0. (5.2)

This means that our functionsϕ do not depend onWIJ , since (5.2) is fulfilled automatically
for the other elements of the basis, as we saw in the previous section. Thus, the functions
obeying (5.2) are

ϕ =
∑

kI∈Z,vαi∈{0,1}
vji ,vβα∈Z+

µv̄,k̄fv̄,k̄ µv̄,k̄
.= µv̄,k̄,0 fv̄,k̄

.= fv̄,k̄,0. (5.3)

Next we impose right covariance with respect toKI andK:

πR(KI )ϕ = udI rI /2ϕ (5.4a)

πR(K)ϕ = ur̂/2ϕ if m 6= n (5.4b)

πR(K)ϕ = ur̃/2ϕ if m = n (5.4c)

whererI andr̂ , r̃ are parameters to be specified below. Using the following:

πR(KI )F = F (5.5a)

πR(K)F = u(m−n)/2F if m 6= n (5.5b)

πR(K)F = umF if m = n (5.5c)

and the actions ofKI andK on the new generators and their products we find

πR(KI )ϕ = udI kI /2ϕ for I 6 m + n− 1 I 6= m (5.6a)

πR(Km)ϕ = u 1
2 (km+

∑m+n−1
β=m+1 kβ )ϕ (5.6b)

πR(K)ϕ = u 1
2 (
∑m

j=1 jkj+
∑m+n−1

β=m+1(β−m)kβ+(m−n)km+n)ϕ if m 6= n (5.6c)

πR(K)ϕ = u 1
2 (
∑m

j=1 jkj−
∑m+n−1

β=m+1(β−m)kβ+2mkm+n)ϕ if m = n. (5.6d)

Comparing the right covariance (5.4) with the direct calculations (5.6) we obtain

kI = rI for I 6 m + n− 1 I 6= m (5.7a)

km = rm −
m+n−1∑
β=m+1

rβ (5.7b)

r̂ =
m∑
j=1

jkj +
m+n−1∑
β=m+1

(β −m)kβ + (m− n)km+n

=
m∑
j=1

jrj +
m+n−1∑
β=m+1

(β − 2m)rβ + (m− n)km+n if m 6= n (5.7c)

r̃ =
m∑
j=1

jkj −
2m−1∑
β=m+1

(β −m)kβ + 2mk2m

=
2m−1∑
J=1

JdJ rJ + 2mk2m if m = n. (5.7d)
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This means thatrI , r̂, r̃ ∈ Z and there is no summation inkI ; also we have

km+n = 1

m− n
(
r̂ −

m∑
j=1

jrj −
m+n−1∑
β=m+1

(β − 2m)rβ

)
if m 6= n (5.8a)

k2m = 1

2m

(
r̃ −

2m−1∑
J=1

JdJ rJ

)
if m = n. (5.8b)

Thus, the reduced functions obeying (5.2) and (5.4) are

ϕ =
∑

vαi∈{0,1}
vji ,vβα∈Z+

µv̄fv̄4r̄ µv̄
.= µv̄,0 fv̄

.= fv̄,0 (5.9a)

4r̄
.= (D1)

r1 . . . (Dm−1)
rm−1(Dm)

ŝ(Gm+1)
rm+1 . . . (Gm+n−1)

rm+n−1(F)t̂ (5.9b)

r̄ = {r1, . . . , rm+n−1, r̂(or r̃)}
where

ŝ = rm −
m+n−1∑
β=m+1

rβ (5.10a)

t̂ =


1

m− n
(
r̂ −

m∑
j=1

jrj −
m+n−1∑
β=m+1

(β − 2m)rβ

)
if m 6= n

1

2m

(
r̃ −

2m−1∑
J=1

JdJ rJ

)
if m = n.

(5.10b)

Next we shall give theU representation (left) actionπ on ϕ. Besides the action of the
‘Chevalley’ generatorsKI ,X

±
I ,K we shall give for the readers convenience also the action of

PI ,QI though it follows from that ofKI . We have

π(KI )Ylj = u(δI+1,l−δI+1,j−δI l+δIj )/2Ylj (5.11a)

π(X+
I )Ylj = −u(Ĩ+dI+dI+1)/2Q

−1/2
I,I+1Q

−1/2
Ij δI l(δlm0m+1,m + (1− δlm)Yl+1,j )

+uQ−1/2
I,I+1Q

−1/2
I l

(
qj,j+1qj+1,l

qjl

)(1−δl,j+1)

δIjYj+1,j Ylj

+uQ−1/2
I,I+1Q

1/2
I l Q

−1/2
I,j−1Q

−1/2
Ij δI+1,j ×

{
qj−1,l

qj−1,j qjl
Yl,j−1− Yj,j−1Ylj

}
(5.11b)

π(X−I )Ylj = −u−2Q
1/2
II Q

1/2
Ij u

−δIj δI+1,lYl−1,j (5.11c)

π(K)Ylj = Ylj (5.11d)

π(P1/2
I )Ylj = Q−1/2

I l Q
1/2
Ij Ylj (5.11e)

π(Q1/2
I )Ylj = u(δI+1,l−δI+1,j−δI l+δIj )Q1/2

I l Q
−1/2
Ij Ylj (5.11f)

π(KI )0αj = udI (
dI
dI+1

(δI+1,α−δI+1,j )−δIα+δIj )/20αj (5.12a)

π(X+
I )0αj = −u−1Q

−1/2
I,I+1Q

−1/2
Ij δIα0α+1,j

+u(Ĩ+dI+dI+1)/2Q
−1/2
I,I+1Q

−1/2
Iα

(
qj,j+1qj+1,α

qjα

)(1−δα,j+1)

δIj

×((1− δjm)Yj+1,j − δjm0m+1,m)0αj + uQ−1/2
I,I+1Q

1/2
Iα Q

−1/2
I,j−1Q

−1/2
Ij δI+1,j

×
{
qj−1,α

qj−1,j qjα
0α,j−1− Yj,j−10αj

}
(5.12b)
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π(X−I )0αj = −(−1)Ĩ u(Ĩ−3dI−dI+1)1/2Q
1/2
Ij u

−δIj δI+1,α × {δα,m+1Ymj + (1− δα,m+1)0α−1,j }
(5.12c)

π(K)0αj =
{
0αj if m 6= n
u0αj if m = n (5.12d)

π(P1/2
I )0αj = Q−1/2

Iα Q
1/2
Ij 0αj (5.12e)

π(Q1/2
I )0αj = udI (

dI
dI+1

(δI+1,α−δI+1,j )−δIα+δIj )Q
1/2
Iα Q

−1/2
Ij 0αj (5.12f)

π(KI )Zβα = udI (
dI
dI+1

(δI+1,β−δI+1,α)−δIβ+δIα)/2Zβα (5.13a)

π(X+
I )Zβα = −u′Q−1/2

I,I+1Q
−1/2
Iα δIβZβ+1,α

+u′Q−1/2
I,I+1Q

−1/2
Iβ

(
q ′α,α+1q

′
α+1,β

q ′αβ

)(1−δβ,α+1)

δIαZα+1,αZβα

+(−1)Î +̂I+1u2Ĩ u(Ĩ+dI+dI+1)/2Q
−1/2
I,I+1Q

1/2
Iβ Q

−1/2
I,α−1Q

−1/2
Iα δI+1,α

×
{

q ′α−1,β

q ′α−1,αq
′
αβ

(δIm0βm + (1− δIm)Zβ,α−1)

−δIm0m+1,mZβα − (1− δIm)Zα,α−1Zβα

}
(5.13b)

π(X−I )Zβα = −u′−2Q
1/2
II Q

1/2
Iα u

′−δIα δI+1,βZβ−1,α (5.13c)

π(K)Zβα = Zβα (5.13d)

π(P1/2
I )Zβα = Q−1/2

Iβ Q
1/2
Iα Zβα (5.13e)

π(Q1/2
I )Zβα = udI (

dI
dI+1

(δI+1,β−δI+1,α)−δIβ+δIα)Q
1/2
Iβ Q

−1/2
Iα Zβα (5.13f)

π(KI )Dj = u−δIj /2Dj (5.14a)

π(X+
I )Dj = −u(Ĩ+dI+dI+1)/2Q

−1/2
I,I+1

j−1∏
s=1

Q
1/2
Is δIj × (δjm0m+1,m + (1− δjm)Yj+1,j )Dj (5.14b)

π(X−I )Dj = 0 (5.14c)

π(K)Dj = u−j/2Dj (5.14d)

π(P1/2
I )Dj =

j∏
s=1

Q
−1/2
Is Dj (5.14e)

π(Q1/2
I )Dj = u−δIj

j∏
s=1

Q
1/2
Is Dj (5.14f)

π(KI )Gβ = u(−δIm+δIβ )/2Gβ (5.15a)

π(X+
I )Gβ = −u(Ĩ+dI+dI+1)/2Q

−1/2
I,I+1

{ β−1∏
α=m+1

Q
1/2
Iα δIβZβ+1,β +

β∏
α=m+2

Q1/2
mα δIm0m+1,m

}
Gβ (5.15b)

π(X−I )Gβ = 0 (5.15c)

π(K)Gβ =
{
u−(β−m)/2Gβ if m 6= n
u′−(β−m)/2Gβ if m = n (5.15d)
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π(P1/2
I )Gβ =

β∏
α=m+1

Q
−1/2
Iα Gβ (5.15e)

π(Q1/2
I )Gβ = u(−δIm+δIβ )

β∏
α=m+1

Q
1/2
Iα Gβ (5.15f)

π(KI )F = F (5.16a)

π(X+
I )F = 0 (5.16b)

π(X−I )F = 0 (5.16c)

π(K)F =
{
u(n−m)/2F if m 6= n
u−mF if m = n (5.16d)

π(P1/2
I )F = F (5.16e)

π(Q1/2
I )F = F . (5.16f)

Now we note that from (5.14)–(5.16) we have the important consequence that the degrees
of variablesDj ,Gβ , F are not changed by the action ofU . Thus, the parametersrI andr̂ (or
r̃) indeed characterize the action ofU , i.e., we have obtained representations ofU .

• Thus, by formulae (5.11)–(5.16) we have given the induced representations ofU labelled
by them+n integer numbersrI andr̂ (or r̃) and acting in the space of formal power series
of (m+n)(m+n−1)/2 non-commuting variables, of which themn variables0αi are odd
and the variablesYij andZαβ are even.

Remark. For u = q = 1 our representations coincide with the holomorphic representations
induced from the upper diagonal Borel subsupergroupB ofG ≡ GL(m/n) and acting on the
cosetG/G+, whereG+ is the strictly upper diagonal supergroup ofG. That is why we call
our representations induced.

To obtain our representation more explicitly one is using these formulae together with the
rules (3.8) and (3.9). In particular, we see that:

π(K)ϕ =
{
u−r̂/2ϕ if m 6= n
u−r̃/2ϕ′ if m = n (5.17a)

ϕ′ =
∑

vαi∈{0,1}
vji ,vβα∈Z+

µv̄u
∑

α,i vαi fv̄4r̄ . (5.17b)

We notice from (5.16) thatU ′ acts trivially onF . Thus, the action ofU ′ involves only the
parametersrI , I 6 m+n−1. On the other hand by (5.17) we see that the action ofK involves
only the parameter̃r ′ (r̃ ′ = r̂ if m 6= n, r̃ ′ = r̃ if m = n). Thus we can consistently also from
the representation theory point of view restrict toSLuq(m/n), i.e., we set

F = F−1 = 1A. (5.18)

Note that in order to enforce this condition it is also necessary thatF commutes with all
generators, and the conditions for this which follow from the explicit commutation relation in
appendix C are just conditions (2.11).
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With (5.18) enforced the dual algebra isU ′ ≡ Uuq(sl(m/n)). Thus, the reduced functions
for theU ′ action are

ϕ =
∑

vαi∈{0,1}
vji ,vβα∈Z+

µv̄fv̄4
0
r̄ (5.19a)

40
r̄

.= Dr1
1 . . . D

rm−1

m−1D
ŝ
mG

rm+1
m+1 . . . G

rm+n−1

m+n−1. (5.19b)

• Thus, by formulae (5.11)–(5.15), we have given the induced representations ofU ′ labelled
by them + n − 1 integer numbersrI . Foru = q = 1 our representations coincide with
the standard holomorphic representations induced fromB and acting on the cosetG/B.

To obtain the representations more explicitly one is using these formulae together with
the rules (3.8). In particular, we have

π(KI )(Ylj )
k = uk(δI+1,l−δI+1,j−δI l+δIj )/2(Ylj )k (5.20a)

π(X+
I )(Ylj )

k = −u(Ĩ+dI+dI+1)/2Q
−1/2
I,I+1Q

(k−2)/2
Ij clδI l(Ylj )

k−1× (δlm0m+1,m + (1− δlm)Yl+1,j )

+uQ−1/2
I,I+1Q

(k−2)/2
I l cj

(
qj,j+1qj+1,l

qjl

)(1−δl,j+1)

δIjYj+1,j (Ylj )
k

+uQ−1/2
I,I+1Q

k/2
I l

(qj−1,j

u

)k
c̃j−1δI+1,j

×
{
qj−1,l

qj−1,j qjl
Yl,j−1(Ylj )

k−1− Yj,j−1(Ylj )
k

}
(5.20b)

π(X−I )(Ylj )
k = −u−2Q

1/2
II Q

k/2
Ij u

−kδIj cl−1δI+1,lYl−1,j (Ylj )
k−1 (5.20c)

π(P1/2
I )(Ylj )

k = Q−k/2I l Q
k/2
Ij (Ylj )

k (5.20d)

π(Q1/2
I )(Ylj )

k = uk(δI+1,l−δI+1,j−δI l+δIj )Qk/2
I l Q

−k/2
Ij (Ylj )

k (5.20e)

π(KI )(Zβα)
k = ukdI (

dI
dI+1

(δI+1,β−δI+1,α)−δIβ+δIα)/2(Zβα)
k (5.21a)

π(X+
I )(Zβα)

k = −u′Q−1/2
I,I+1Q

(k−2)/2
Iα cβδIβ(Zβα)

k−1Zβ+1,α

+u′Q−1/2
I,I+1Q

(k−2)/2
Iβ cα

(
q ′α,α+1q

′
α+1,β

q ′αβ

)(1−δβ,α+1)

δIαZα+1,α(Zβα)
k

+(−1)Î +̂I+1u(Ĩ+dI+dI+1)/2Q
−1/2
I,I+1Q

k/2
Iβ c̃I δI+1,α

×
{

q ′α−1,β

q ′α−1,αq
′
αβ

(
δIm(qm,m+1)

k0βm + (1− δIm)
(
q ′α−1,α

u′

)k
Zβ,α−1

)
(Zβα)

k−1

− δIm(qm,m+1)
k0m+1,m(Zβα)

k − (1− δIm)
(
q ′α−1,α

u′

)k
Zα,α−1(Zβα)

k

}
(5.21b)

π(X−I )(Zβα)
k = −u′−2Q

1/2
II Q

k/2
Iα u

′−kδIα cβ−1δI+1,βZβ−1,α(Zβα)
k−1 (5.21c)

π(P1/2
I )(Zβα)

k = Q−k/2Iβ Q
k/2
Iα (Zβα)

k (5.21d)

π(Q1/2
I )(Zβα)

k = ukdI (
dI
dI+1

(δI+1,β−δI+1,α)−δIβ+δIα)Q
k/2
Iβ Q

−k/2
Iα (Zβα)

k (5.21e)

π(KI )(Dj )
k = u−kδIj /2(Dj )

k (5.22a)

π(X+
I )(Dj )

k = −u(Ĩ+dI+dI+1)/2Q
−1/2
I,I+1

j−1∏
s=1

Q
k/2
Is c̃j δIj × (δjm0m+1,m + (1− δjm)Yj+1,j )(Dj )

k
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(5.22b)

π(X−I )(Dj )
k = 0 (5.22c)

π(P1/2
I )(Dj )

k =
j∏
s=1

Q
−k/2
Is (Dj )

k (5.22d)

π(Q1/2
I )(Dj )

k = u−kδIj
j∏
s=1

Q
k/2
Is (Dj )

k (5.22e)

π(KI )(Gβ)
k = uk(−δIm+δIβ )/2(Gβ)

k (5.23a)

π(X+
I )(Gβ)

k = −u(Ĩ+dI+dI+1)/2Q
−1/2
I,I+1c̃I

{ β−1∏
α=m+1

Q
k/2
Iα δIβZβ+1,β +

β∏
α=m+2

Qk/2
mα δIm0m+1,m

}
(Gβ)

k

(5.23b)

π(X−I )(Gβ)
k = 0 (5.23c)

π(P1/2
I )(Gβ)

k =
β∏

α=m+1

Q
−k/2
Iα (Gβ)

k (5.23d)

π(Q1/2
I )(Gβ)

k = uk(−δIm+δIβ )
β∏

α=m+1

Q
k/2
Iα (Gβ)

k. (5.23e)

As a consequence we have, e.g.,

π(KI )ϕ = u− 1
2dI rI

∑
vγ k∈{0,1}
vji ,vβα∈Z+

u
1
2vji (δI+1,j−δI+1,i−δIj+δIi )

×u 1
2vγ kdI (

dI
dI+1

(δI+1,β−δI+1,α)−δIβ+δIα)u
1
2vβαdI

(
dI
dI+1

(δI+1,β−δI+1,α)−δIβ+δIα
)
× µv̄fv̄40

r̄ .

(5.24)

Finally, since the action ofU ′ is not affecting the degrees ofDj andGβ , we may introduce
(as in [40, 41]) the restricted functions

ϕ̃ =
∑

vαi∈{0,1}
vji ,vβα∈Z+

µv̄fv̄ (5.25)

using the intertwining operator

ϕ̃ ≡ Iϕ .= ϕ|Di=Gα=1A . (5.26)

We denote the representation space ofϕ by Cr̄ , the representation space ofϕ̃ by C̃r̄ , and the
representation acting oñϕ by π̃ . Thus, the operatorI acts fromCr̄ to C̃r̄ . The properties of̃Cr̄
follow from the intertwining requirement forI [40]:

π̃I = Iπ. (5.27)

In particular, we have

π̃(KI )ϕ̃ = u− 1
2dI rI

∑
vγ k∈{0,1}
vji ,vβα∈Z+

u
1
2vji (δI+1,j−δI+1,i−δIj+δIi )

×u 1
2vγ kdI (

dI
dI+1

(δI+1,β−δI+1,α)−δIβ+δIα)u
1
2vβαdI (

dI
dI+1

(δI+1,β−δI+1,α)−δIβ+δIα) × µv̄fv̄. (5.28)

• We finish by noting that the functions̃ϕ have the important advantage that the
representation actioñπ can be extended to arbitrary complexrI . This is seen, e.g., from
(5.28).
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6. Outlook

The representations constructed in this paper will have many applications. The most interesting
ones seem to be connected with the case of the multiparameter quantum conformal supergroup
which is a real form ofU ′ for m = 4, i.e., of Uuq(sl(4/N)). In this case the non-
commuting variablesYij contain a deformation of Minkowski space (as in [46]) which
together with the variables0αi will give a noncommutativeN -extended Minkowski superspace.
Further we shall analyse the reducibility of our representations and construct invariant super
q-difference equations, (e.g., deformed super Yang–Mills equations), generalizing to the
supersymetric case the construction of invariantq-difference equations given in [41, 47].
A separate line of investigation may be the construction of the positive energy unitary
irreducible representations of deformed extended conformal supersymmetry, e.g., the massles
superconformal representations, generalizing, e.g., the massless conformal representations, cf
[48]. Naturally, we expect as usually the generalizations to supersymmetry to exhibit much
more richer structures than the nonsupersymmetric ones. We finish by stressing that these are
only some examples of future developments and applications.
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Appendix A. Basis for the casem = n = 1

Here we give separately the simplest casem = n = 1, i.e.,GLuq(1/1). We have

T =
(
a b

c d

)
=
(

1 0
0 1

)(
A 0
0 D

)(
1 3

0 1

)
(A.1)

where we suppose now that there exists an elementa−1:

A = a D = d − ca−1b (A.2a)

3 = a−1b 0 = ca−1. (A.2b)

The commutation relations between the old generators are

ab = pba db = pbd
ac = qca dc = qcd
pbc = −qcb b2 = c2 = 0
ad − da = (q−1− p)bc.

(A.3)

The superdeterminant is given by:

F = ad−1− bd−1cd−1. (A.4)

It is central and group-like element, and we suppose that it has an inverse(F)−1. The
commutation relations between the new generators{A,D,3,0} are

A3 = p3A D3 = p3D
A0 = q0A D0 = q0D
30 = −03 32 = 02 = 0

AD = DA.
(A.5)
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One extends the algebra with inverse elementsA−1 andD−1 of A andD, respectively. The
superdeterminant is now given by

F = AD−1. (A.6)

The coalgebra structure is given by

δ(A) = A⊗ A +A3⊗ 0A
δ(D) = D ⊗D +D3⊗ 0D
δ(3) = 1⊗3 +3⊗ A−1D

δ(0) = 0 ⊗ 1 +DA−1⊗ 0.
(A.7)

One can also calculate the coproduct of the inversesA−1 andD−1:

δ(A−1) = A−1⊗ A−1−3A−1⊗ A−10 (A.8a)

δ(D−1) = D−1⊗D−1−3D−1⊗D−10. (A.8b)

The counit and the antipode are given by

εA(A) = εA(D) = 1 (A.9a)

εA(3) = εA(0) = 0 (A.9b)

γA(A) = 1−1A−1 γA(D) = 1−1D−1 (A.9c)

γA(3) = −3F γA(0) = −F0 (A.9d)

where

1 = 1− q−13F0. (A.10)

Now let us write explicitly the right action on the old and new basis. For the basis
{a, d, b, c} we have:

πR(K1)

(
a b

c d

)
= u1/2

(
a b

c d

)
(A.11a)

πR(P1/2
1 )

(
a b

c d

)
= uq1/2

(
a b

c d

)
(A.11b)

πR(Q1/2
1 )

(
a b

c d

)
= q−1/2

(
a b

c d

)
(A.11c)

πR(X
+
1)

(
a b

c d

)
= (uq)−1/2

(
0 a

0 c

)
(A.11d)

πR(X
−
1 )

(
a b

c d

)
= −(uq)1/2

(
b 0
d 0

)
(A.11e)

πR(K)
(
a b

c d

)
=
(
u1/2a u−1/2b

u1/2c u−1/2d

)
. (A.11f)

On the new basis we have:

πR(K1)

(
A 3

0 D

)
=
(
u1/2A 3

0 u1/2D

)
(A.12a)

πR(P1/2
1 )

(
A 3

0 D

)
=
(
uq1/2A 3

0 uq1/2D

)
(A.12b)

πR(Q1/2
1 )

(
A 3

0 D

)
=
(
q−1/2A 3

0 q−1/2D

)
(A.12c)

πR(X
+
1)

(
A 3

0 D

)
=
(

0 u1/2

0 0

)
(A.12d)
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πR(X
−
1 )

(
A 3

0 D

)
=
( −(uq)1/2A3 0
−u1/2qDA−1 (uq)1/2D3

)
(A.12e)

πR(K)
(
A 3

0 D

)
=
(
u1/2A u−13

0 u−1/2D

)
. (A.12f)

Finally, the right action onA−1 is given by

πR(KI )A
−1 = u−1/2A−1 πR(P1/2

I )A−1 = (uq)−1/2A−1

πR(Q1/2
I )A−1 = q1/2A−1 πR(X

+
I )A

−1 = 0
πR(X

−
I )A

−1 = (uq)1/23A−1 πR(K)A−1 = u−1/2A−1.

(A.13)

Appendix B. Basis for the casem = 2, n = 1

Now let us take the case ofm = 2, n = 1. The quantum matrix may be decomposed as

T =
(
a11 a12 b13

a21 a22 b23

c31 c32 d33

)
=
( 1 0 0
z21 1 0
γ31 γ32 1

)(
D11 0 0
0 D22 0
0 0 G33

)( 1 u12 β13

0 1 β23

0 0 1

)
(B.1)

where we have to suppose that there existD−1
11 andD−1

22 :

D11 = a11 D22 = a22− a21a
−1
11 a12 (B.2a)

u12 = a−1
11 a12 z21 = a21a

−1
11 (B.2b)

β13 = a−1
11 b13 β23 = D−1

22 (b23− a21a
−1
11 b13) (B.3a)

γ31 = c31a
−1
11 γ32 = (c32− c31a

−1
11 a12)D

−1
22 (B.3b)

G33 = d33− γ31D11β13− γ32D22β23. (B.4)

The commutation relations between these generators are

u12D11 = u2

q12
D11u12 β13D11 = u2

q13
D11β13

β23D11 = q12

q13
D11β23

u12D22 = 1

q12
D22u12 β13D22 = u2

q12q23
D22β13

β23D22 = u2

q23
D22β23

(B.5)

u12G33 = q23

q13
G33u12

β13G33 = 1

q ′13

G33β13 β23G33 = 1

q ′23

G33β23

D11z21 = 1

q12
z21D11 D11γ31 = 1

q13
γ31D11

D11γ32 = q12

q13
γ32D11

D22z21 = u2

q12
z21D22 D22γ31 = u2

q12q23
γ31D22

D22γ32 = 1

q23
γ32D22

(B.6)
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G33z21 = q23

q13
z21G33

G33γ31 = 1

q13
γ31G33 G33γ32 = 1

q23
γ32G33

[D11,D22] = [D11,G33] = [D22,G33] = 0

(B.7)

u12β13 = hβ13u12 β13β23 = −gβ23β13

gβ23u12− u12β23 = u(u− u−1)β13 (β13)
2 = (β23)

2 = 0
(B.8)

z21γ31 = g−1γ31z21 γ31γ32 = −h−1γ32γ31

γ32z21− hz21γ32 = u−1(u− u−1)γ31 (γ31)
2 = (γ32)

2 = 0
(B.9)

[u12, z21] = [u12, γ31] = [u12, γ32] = 0

[β13, z21] = [β23, z21] = 0

β13γ31 + γ31β13 = β13γ23 + γ23β13 = 0

β23γ13 + γ13β23 = β23γ23 + γ23β23 = 0

(B.10)

whereg = q12q23/q13 andh = g/u2. The superdeterminant is now given by

F = D11D22G
−1
33 . (B.11)

It satisfies the following commutation relations with the new generators:

u12F = q̃1Fu12 Fz21 = q̃1z21F (B.12a)

β13F = q̃1q̃2Fβ13 Fγ31 = q̃1q̃2γ31F (B.12b)

β23F = q̃2Fβ23 Fγ32 = q̃2γ32F (B.12c)

D11F = FD11 D22F = FD22 G33F = FG33. (B.12d)

The action of the right action on the new basis is as follows:

πR(KI )

(
D11 u12 β13

z21 D22 β23

γ31 γ32 G33

)
=
(
uδI1/2D11 u(δI2−2δI1)/2u12 u(δI+1,3−δI1)/2β13

z21 u(δI2−δI+1,2)/2D22 u(δI+1,2)/2β23

γ31 γ32 uδI+1,3/2G33

)
(B.13a)

πR(P1/2
I )

(
D11 u12 β13

z21 D22 β23

γ31 γ32 G33

)
=
Q1/2

I1 D11 Q
−1/2
I1 Q

1/2
I2 u12 Q

−1/2
I1 Q

1/2
I3 β13

z21 Q
1/2
I2 D22 Q

1/2
I3 Q

−1/2
I2 β23

γ31 γ32 Q
1/2
I3 G33

 (B.13b)

πR(Q1/2
I )

(
D11 u12 β13

z21 D22 β23

γ31 γ32 G33

)

=
 uδI1Q

−1/2
I1 D11 u(δI2−2δI1)Q

1/2
I1 Q

−1/2
I2 u12 u(δI+1,3−δI1)Q

1/2
I1 Q

−1/2
I3 β13

z21 u(δI2−δI+1,2)Q
−1/2
I2 D22 uδI+1,2Q

−1/2
I3 Q

1/2
I2 β23

γ31 γ32 uδI+1,3Q
−1/2
I3 G33


(B.13c)

πR(X
+
I )

(
D11 u12 β13

z21 D22 β23

γ31 γ32 G33

)
=
( 0 uδI+1,2 u1/2h1/2δI+1,3u12

0 0 u1/2δI+1,3

0 0 0

)
. (B.13d)

Appendix C. Commutation relations of the new basis

We first give the commutation relation between the generators{Yji , 0αi , Zβα, Uij , 3iα, Vαβ .
The indices used below obeyi < j < k < l 6 m andm + 1 6 α < β < γ < δ throughout
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the appendix. We also use the notation

pIJ ≡ qIJ

u2
p′IJ ≡

q ′IJ
u′2
. (C.1)

We start with the generatorsYji, 0αi, Zβα of the ‘lower triangular’ subsuperalgebra:

YkjYki = qij qjk

qik
YkiYkj (C.2a)

YkiYji = qij qjk

qik
YjiYki (C.2b)

YkjYji = pijpjk

pik
YjiYkj + u−1(u− u−1)Yki (C.2c)

YliYkj = qikqkl

qij qjl
YkjYli (C.2d)

qjl

qjkqkl
YljYki = pijpjl

pil
YkiYlj + u−1(u− u−1)YkjYli (C.2e)

YlkYji = qikqjl

qilqjk
YjiYlk (C.2f)

0αiYji = qij qjα

qiα
Yji0αi (C.3a)

0αjYji = pijpjα

piα
Yji0αj + u−1(u− u−1)0αi (C.3b)

0αiYkj = qikqkα

qij qjα
Ykj0αi (C.3c)

qjα

qjkqkα
0αjYki = pijpjα

piα
Yki0αj + u−1(u− u−1)Ykj0αi (C.3d)

0αkYji = qikqjα

qiαqjk
Yji0αk (C.3e)

ZβαYji = qiαqjβ

qiβqjα
YjiZβα (C.4)

0αj0αi = −
q ′ij q

′
jα

q ′iα
0αi0αj (C.5a)

0βi0αi = −qiαqαβ
qiβ

0αi0βi (C.5b)

0βi0αj = −qiαqαβ
qij qjβ

0αj0βi (C.5c)

q ′jβ
q ′jαq

′
αβ

0βj0αi = −
p′ijp

′
jβ

p′iβ
0αi0βj + u′−1(u′ − u′−1)0αj0βi (C.5d)

(0αi)
2 = 0 (C.5e)

Zβα0βk =
q ′kαq

′
αβ

q ′kβ
0βkZβα (C.6a)

Zβα0αk =
p′kαp

′
αβ

p′kβ
0αkZβα + u′−1(u′ − u′−1)0βk (C.6b)

Zβα0γk = qkαqαγ

qkβqβγ
0γkZβα (C.6c)



Induced representations of multiparameter Hopf superalgebras 4233

q ′αγ
q ′αβq

′
βγ

Zγα0βk =
p′kαp

′
αγ

p′kγ
0βkZγα + u′−1(u′ − u′−1)

qkαqαγ

qkβqβγ
0γkZβα (C.6d)

Zγβ0αk = qkβqαγ

qkγ qαβ
0αkZγβ (C.6e)

ZγβZγα =
q ′αβq

′
βγ

q ′αγ
ZγαZγβ (C.7a)

ZγαZβα =
q ′αβq

′
βγ

q ′αγ
ZβαZγα (C.7b)

ZγβZβα =
p′αβp

′
βγ

p′αγ
ZβαZγβ + u′−1(u′ − u′−1)Zγα (C.7c)

ZδαZγβ = qαγ qγ δ

qαβqβδ
ZγβZδα (C.7d)

q ′βδ
q ′βγ qγ δ

ZδβZγα =
p′αβp

′
βδ

p′αδ
ZγαZδβ + u′−1(u′ − u′−1)ZγβZδα (C.7e)

ZδγZβα = qαγ qβδ

qαδqβγ
ZβαZδγ . (C.7f)

Next we consider the generatorsUij ,3iα, Vαβ of the ‘upper triangular’ subsuperalgebra:

UijUik = pijpjk

pik
UikUij (C.8a)

UikUjk = pijpjk

pik
UjkUik (C.8b)

UijUjk = qij qjk

qik
UjkUij − u(u− u−1)Uik (C.8c)

UijUkl = pikpjl

pilpjk
UklUij (C.8d)

pjl

pjkpkl
UikUjl = qij qjl

qil
UjlUik − u(u− u−1)

pijpjl

pikpkl
UjkUil (C.8e)

UilUjk = pijpjl

pikpkl
UjkUil (C.8f)

Uij3iα = pijpjα

piα
3iαUij (C.9a)

Uij3jα = qij qjα

qiα
3jαUij − u(u− u−1)3iα (C.9b)

Uij3kα = pikpjα

piαpjk
3kαUij (C.9c)

pjα

pjkpkα
Uik3jα = qij qjα

qiα
3jαUik − u(u− u−1)3iαUjk (C.9d)

Ujk3iα = pikpkα

pijpjα
3iαUjk (C.9e)

UijVαβ = piαpjβ

piβpjα
VαβUij (C.10)

3iα3jα = −
p′ijp

′
jα

p′iα
3jα3iα (C.11a)
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3iα3iβ = −piαpαβ
piβ

3iβ3iα (C.11b)

3iβ3jα = − pijpjβ
piαpαβ

3jα3iβ (C.11c)

qij qjβ

qiβ
3iα3jβ = − pjβ

pjαpαβ
3jβ3iα − u(u− u−1)

pijpjβ

piαpαβ
3jα3iβ (C.11d)

(3iα)
2 = 0 (C.11e)

3kβVαβ =
p′kαp

′
αβ

p′kβ
Vαβ3kβ (C.12a)

3kαVαβ =
q ′kαq

′
αβ

q ′kβ
Vαβ3kα − u′(u′ − u′−1)3kβ (C.12b)

3kαVβγ = pkβpαγ

pkγ pαβ
Vβγ3kα (C.12c)

p′αγ
p′αβp

′
βγ

3kβVαγ =
q ′kαq

′
αγ

q ′kγ
Vαγ3kβ − u′(u′ − u′−1)

pkαpαγ

pkβpβγ
Vαβ3kγ (C.12d)

3kγ Vαβ = pkαpαγ

pkβpβγ
Vαβ3kγ (C.12e)

VαβVαγ =
p′αβp

′
βγ

p′αγ
Vαγ Vαβ (C.13a)

VαδVβγ = pαβpβδ

pαγ pγ δ
Vβγ Vαδ (C.13b)

VαβVβγ =
q ′αβq

′
βγ

q ′αγ
Vβγ Vαβ − u′(u′ − u′−1)Vαγ (C.13c)

VαβVγ δ = pαγ pβδ

pαδpβγ
Vγ δVαβ (C.13d)

p′βδ
p′βγ p

′
γ δ

Vαγ Vβδ =
q ′αβq

′
βδ

q ′αδ
VβδVαγ − u′(u′ − u′−1)

pαβpβδ

pαγ pγ δ
Vβγ Vαδ (C.13e)

Vαγ Vβγ =
p′αβp

′
βγ

p′αγ
Vβγ Vαγ . (C.13f)

Now we give the commutation relations of the ‘diagonal’ generatorsDii,Gαα,F with the
‘off-diagonal’ ones:

DiiYji = q−1
ij YjiDii (C.14a)

DjjYji = u2

qij
YjiDjj (C.14b)

DiiYkj = qij

qik
YkjDii (C.14c)

DjjYki = u2

qij qjk
YkiDjj (C.14d)

DkkYji = qjk

qik
YjiDkk (C.14e)

Dii0αi = q−1
iα 0αiDii (C.14f)
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Dii0αj = qij

qiα
0αjDii (C.14g)

Djj0αi = u2

qij qjα
0αiDjj (C.14h)

DiiZβα = qiα

qiβ
ZβαDii (C.14i)

UijDii = u2

qij
DiiUij (C.15a)

UijDjj = q−1
ij DjjUij (C.15b)

UjkDii = qij

qik
DiiUjk (C.15c)

UikDjj = u2

qij qjk
DjjUik (C.15d)

UijDkk = qjk

qik
DkkUij (C.15e)

3iαDii = u2

qiα
Dii3iα (C.15f)

3iαDjj = u2

qij qjα
Djj3iα (C.15g)

3jαDii = qij

qiα
Dii3jα (C.15h)

VαβDii = qiα

qiβ
DiiVαβ (C.15i)

GααYji = qjα

qiα
YjiGαα (C.16a)

Gαα0αi = u′2

q ′iα
0αiGαα (C.16b)

Gαα0βi = u2

qiαqαβ
0βiGαα (C.16c)

Gββ0αi = qαβ

qiβ
0αiGββ (C.16d)

GααZβα = q ′−1
αβ ZβαGαα (C.16e)

GββZβα = u′2

q ′αβ
ZβαGββ (C.16f)

GααZγβ = qαβ

qαγ
ZγβGαα (C.16g)

GββZγα = u2

qαβqβγ
ZγαGββ (C.16h)

GγγZβα = qβγ

qαγ
ZβαGγγ (C.16i)

UijGαα = qjα

qiα
GααUij (C.17a)
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3iαGαα = q ′−1
iα Gαα3iα (C.17b)

3iαGββ = qαβ

qiβ
Gββ3iα (C.17c)

3iβGαα = u2

qiαqαβ
Gαα3iβ (C.17d)

VαβGαα = u′2

q ′αβ
GααVαβ (C.17e)

VαβGββ = q ′−1
αβGββVαβ (C.17f)

VαβGγγ = qβγ

qαγ
Gγγ Vαβ (C.17g)

VαγGββ = u2

qαβqβγ
GββVαγ (C.17h)

VβγGαα = qαβ

qαγ
GααVβγ . (C.17i)

Using (C.14)–(C.17) we obtain the commutation relations ofDi =
∏i
j=1Djj , Gα =∏α

β=m+1Gββ .

FYji =
( j−1∏
s=i
q̃s

)
YjiF (C.18a)

F0αi =
( α−1∏
S=i

q̃S

)
0αiF (C.18b)

FZβα =
( β−1∏
γ=α

q̃γ

)
ZβαF (C.18c)

UijF =
( j−1∏
s=i
q̃s

)
FUij (C.18d)

3iαF =
( α−1∏
S=i

q̃S

)
F3iα (C.18e)

VαβF =
( β−1∏
γ=α

q̃γ

)
FVαβ. (C.18f)

Finally, the elements of the strictly lower triangular generatorsYji, 0αi, Zβα
supercommute the strictly upper triangular generatorsUij ,3iα, Vαβ . Analogously, the
diagonal elementsDii,Gαα,F commute with each other.
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